跳至內容

霍赫洛夫-沯波咯慈卡婭方程

維基百科,自由的百科全書
Khokhlov-Zabolotskaya equation
Khokhlov-Zabolotskaya equation

霍赫洛夫-沯波咯慈卡婭方程( Khokhlov--Zabolotskaya equation)是一個非線性偏微分方程[1][2]

解析解

[編輯]

霍赫洛夫-沯波咯慈卡婭方程有行波解:

p[2] := 1.32+1.4934776966447732662*(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^1.2
p[3] := 1.32+1.4934776966447732662*(.2707963267948966192-1.4974545260150964159*x^1.2-1.*C[2]^1.2*y^1.2)^1.2
p[7] := 1.32+1.4934776966447732662((55.009468881881296225-14.965237496723309046*I)*sqrt(1.-.
66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-.66321499013806706114*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.38969456396968710805*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((.84629952125971224961+.23023442302651244686*I)*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .86217948717948717949-.50660293316059324046*I)/sqrt(3000.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-6725.*JacobiNS(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+5070.))^1.2
p[8] := 1.32+1.4934776966447732662*(-(34.214441730088728277*I)*sqrt(1.+2.1356058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-2.2476058039711429821*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.4613712067681992557*I)*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), 1.0258869993454412308*I)/sqrt(3000.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4+70.*JacobiDN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-625.))^1.2
p[9] := 1.32+1.4934776966447732662*((38.347855408516105018-11.263642905975212858*I)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2-(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*sqrt(1.-1.3164251207729468599*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+(.84634523908200302082*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2)*EllipticF((1.2003002147146243158+.35255564762321759608*I)*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3), .84115756322748992840-.54079011994043611908*I)/sqrt(5070.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^4-5450.*JacobiCN(1.68+1.9520491881558575047*x^1.2+1.2*C[2]^1.2*y^1.2, 1.3)^2+2070.))^1.2

p[10] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*csc(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2

p[11] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sec(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2
p[12] := 1.32+1.4934776966447732662*arctan(1/sqrt(1.2*sech(1.56+1.7969454312181156991*x^1.2+1.2*C[2]^1.2*y^1.2)^2-1.2))^1.2
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot
Khokhlov-Zabolotskaya equation traveling wave plot

參考文獻

[編輯]
  1. ^ Kodama, Y. and Gibbons, J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. A,Vol. 135, No. 3, pp. 167–170, 1989.
  2. ^ Anna Rozanova-Pierrat Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) Equation,2006
  1. *谷超豪 《孤立子理論中的達布變換及其幾何應用》 上海科學技術出版社
  2. *閻振亞著 《複雜非線性波的構造性理論及其應用》 科學出版社 2007年
  3. 李志斌編著 《非線性數學物理方程的行波解》 科學出版社
  4. 王東明著 《消去法及其應用》 科學出版社 2002
  5. *何青 王麗芬編著 《Maple 教程》 科學出版社 2010 ISBN 9787030177445
  6. Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
  7. Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
  8. Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
  9. Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
  10. Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
  11. Dongming Wang, Elimination Practice,Imperial College Press 2004
  12. David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
  13. George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759