2-氯-1,3-丙二醇
外观
2-氯-1,3-丙二醇 | |
---|---|
别名 | 2-MCPD β-MCP |
识别 | |
CAS号 | 497-04-1 |
PubChem | 10337 |
SMILES |
|
InChI |
|
InChIKey | DYPJJAAKPQKWTM-UHFFFAOYSA-N |
性质 | |
化学式 | C3H7ClO2 |
摩尔质量 | 110.54 g·mol−1 |
外观 | 无色粘稠液体[1] |
密度 | 1.3416 g·cm−3(0 °C,真空) 1.3241 g·cm−3(20 °C,真空)[1] |
沸点 | 96~98 °C(3 mmHg)[2] 122.5~123.5 °C(13.5 mmHg)[1] |
折光度n D |
1.4817(25 °C)[2] |
危险性 | |
GHS危险性符号 | |
GHS提示词 | 危险 |
H-术语 | H301 |
P-术语 | P264, P270, P301+310, P405, P501 |
主要危害 | 急性毒性3级(经口)[3] |
闪点 | N.A. |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
2-氯-1,3-丙二醇是一种有机氯化合物,化学式为C3H7ClO2。它和其同分异构体3-氯-1,2-丙二醇一样,是一种食品污染物,具有细胞毒性。[4]
合成
[编辑]它也可在丙三醇和盐酸在羧酸催化下以副产物的形式伴随1,3-二氯-2-丙醇和3-氯-1,2-丙二醇生成。[5]
反应
[编辑]2-氯-1,3-丙二醇在超声下和吡啶加热反应,可以生成N-(1,3-二羟基-2-丙基)吡啶𬭩氯化物。[6]
它和氢氧化钾反应,可以得到缩水甘油。[7]它和氯化亚砜在乙醚中反应,可以得到2-氯-1,3-丙二醇环亚硫酸酯。[8]
参考文献
[编辑]- ^ 1.0 1.1 1.2 1.3 Read, John; Hurst, Eric. Conversion of allyl alcohol to glyceryl chloro- and bromohydrins. Journal of the Chemical Society, Transactions. 1922, 121: 989-999. ISSN 0368-1645. doi:10.1039/ct9222100989.
- ^ 2.0 2.1 Ben-Ishay, D. A Novel Rearrangement of Substituted Cyclic Sulfites. The Journal of Organic Chemistry. 1958, 23 (12): 2013-2014. doi:10.1021/jo01106a619.
- ^ 2-Chloro-1,3-propanediol. SigmaAldrich. [2024-07-09].
- ^ Thorsten Buhrke, Falko Frenzel, Jan Kuhlmann & Alfonso Lampen. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells. Toxicokinetics and Metabolism. 2015, 89: 2243-2251. doi:10.1007/s00204-014-1395-3.
- ^ R. Tesser, E. Santacesaria, M. Di Serio, G. Di Nuzzi, and V. Fiandra. Kinetics of Glycerol Chlorination with Hydrochloric Acid: A New Route to α,γ-Dichlorohydrin. Industrial & Engineering Chemistry Research. 2007, 46 (20): 6456–6465. doi:10.1021/ie070708n.
- ^ Nayl, AbdElAziz A. ; Arafa, Wael A. A.; Ahmed, Ismail M.; Abd-Elhamid, Ahmed I.; El-Fakharany, Esmail M.; Abdelgawad, Mohamed A.; Gomha, Sobhi M.; Ibrahim, Hamada M.; Aly, Ashraf A.; Brase, Stefan; Mourad, Asmaa K. Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules. 2022, 27 (9): 2940. ISSN 1420-3049. doi:10.3390/molecules27092940.
- ^ Cespi, D.; Cucciniello, R.; Ricciardi, M.; Capacchione, C.; Vassura, I.; Passarini, F.; Proto, A. A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chemistry. 2016, 18 (16): 4559-4570. ISSN 1463-9262.
- ^ P. B. D. de la Mare; W. Klyne; D. J. Millen; J. G. Pritchard and D. Watson. Cyclic sulphites derived from the chloropropanediols. Journal of the Chemical Society (Resumed). 1956: 1813-1817.
- ^ Rahn, Anja K. K.; Yaylayan, Varoujan A. Characterization of electron ionization mass spectral (EIMS) fragmentation patterns of chloropropanol esters of palmitic acid using isotope labeling technique. Journal of Oleo Science. 2014, 63 (10): 1045-1055. ISSN 1345-8957. doi:10.5650/jos.ess14117.
延伸阅读
[编辑]- Ananias Medina, Javier Ibáñez Abad, Pasi Tolvanen, Johan Wärnå, Kari Eränen, Tapio Salmi. Recent advances in glycerol hydrochlorination: Impact of reaction temperature, hydrogen chloride solubility and reaction intermediates. Chemical Engineering Science. 2022, 263: 118064. doi:10.1016/j.ces.2022.118064.
- Hassanein, Salah Mohamed; Burmakov, A. I.; Bloshchina, F. A.; Yagupollskii, L. M. Reaction of hydroxy and carboxyl compounds with sulfur tetrafluoride. XX. Reactions of glycols with sulfur tetrafluoride. Zhurnal Organicheskoi Khimii. 1988, 24 (8): 1633-1638. ISSN 0514-7492.CODEN ZORKAE.