在宇宙學中,宇宙的狀態方程(英文:Equation of state,EOS)被描述為一個理想流體的狀態方程。這個狀態方程的特徵參數是一個無量綱參數,它等於宇宙的能量-動量張量中壓力和能量密度的比值:。它同時和熱力學中的狀態方程以及理想氣體狀態方程有密切聯繫。
一個理想氣體的狀態方程可以寫作
其中是質量密度,是普適氣體常數,是溫度,是氣體分子的熱運動特徵速率。
從而有
其中對一個「冷」的氣體而言有並且,c是真空中的光速。
弗里德曼-勒梅特-羅伯遜-沃爾克度規和狀態方程
[編輯]
狀態方程可以應用到弗里德曼-勒梅特-羅伯遜-沃爾克度規來描述一個充滿理想流體的各向同性宇宙隨時間的演化情況。如果採用作為宇宙標度因子,則有
如果流體是充斥在由物質主導的平直宇宙中的,則
其中是時間。
弗里德曼加速方程一般寫作
其中是宇宙學常數,是牛頓的萬有引力常數,是宇宙標度因子對時間的二階導數。
如果我們定義(可以稱作「有效」)能量密度和壓力分別為
以及
則弗里德曼加速方程可以寫做
對普通的非相對論性物質(例如,冷的塵埃氣體等)而言,狀態方程有,這表明它們滿足關係,其中是體積。這意味着能量密度會隨體積變化發生同樣的紅移,這對於普通的非相對論性物質來說是很自然的。
對超快相對論性物質(例如,輻射,以及極早期宇宙的物質),狀態方程有,這表明它們滿足關係。這意味着在一個膨脹宇宙中,能量密度的衰減要比體積的膨脹更快。這從物質波的角度可以理解為:由於輻射具有動量,對應的物質波波長會發生紅移。
宇宙的暴脹和加速膨脹可以用暗能量的狀態方程來描述。在最簡單的情形中,宇宙學常數的狀態方程有。在這個情形下,上面給出的宇宙標度因子的表達式不成立,而有,其中是哈勃參數。更一般來講,宇宙的加速膨脹可以用任何一個滿足的狀態方程來描述。所謂幽靈能量的狀態方程對應着,這在理論上會造成最終宇宙的大撕裂(Big Rip)。
在一個膨脹宇宙中,具有更大的參數值的流體比具有更小參數值的流體消失得更快。這就引發了大爆炸理論中平直問題(即現在觀測到的宇宙的能量密度非常接近臨界密度,從而它是近乎平直的)和磁單極子問題:空間曲率具有的狀態方程而磁單極子具有的狀態方程,因此如果它們曾出現在大爆炸的早期,它們在今天應該還能被觀測到。在暴脹模型中這些問題得到了解決,暴脹模型具有的狀態方程。對暗能量的狀態方程進行測量是當今觀測宇宙學領域所作的最大努力之一,通過對值的測量,人們寄希望於宇宙學常數可以與的第五元素區分開來。
具有狀態方程的理想流體可以看作是一個標量場:
其中是對時間的導數,而是勢能。一個自由的(即)標量場具有的狀態方程,而具有減少的動能的標量場等價於一個宇宙學常數:。任何介於兩者之間的狀態方程(這一界限被稱作幽靈分界線(Phantom Divide Line)[1])都是有意義的,從而通過標量場構建了能夠解釋宇宙學的很多現象的有用模型。
根據2007年發表在自然雜誌的一篇文章,科學家們通過對超新星和星系群的觀測證據,以及對宇宙微波背景輻射的觀測結果推導出狀態方程的參數的值應該在-1左右的很小範圍內[2]。