跳至內容

累積分布函數

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
指數分布的累積分布函數
正態分布的累積分布函數

累積分布函數(英語:cumulative distribution function,CDF)或概率分布函數,簡稱分布函數,是概率密度函數的積分,能完整描述一個實隨機變量概率分佈

在標量連續分佈的情況下,它給出了從負無窮到概率密度函數下的面積。 累積分佈函數也用於指定多元隨機變量英語Multivariate random variable的分佈。

定義

[編輯]

對於所有實數值的隨機變量 ,累積分布函數定義如下[1]:p. 77

Eq.1

其中右側表示隨機變量取值小於或等於概率

對於位於半閉區間 的概率,其中,因此定義是[1]:p. 84:

Eq.2

在上面的定義中,「小於或等於」符號「≤」是一種約定,不是普遍使用的(例如匈牙利文獻使用「<」),但這種區別對於離散分佈很重要。二項式分布泊松分布的表格的正確使用取決於此約定。此外,像數學家保羅·皮埃爾·萊維(Paul Lévy)的特徵函數反演公式等重要公式也依賴於「小於或等於」公式。

性質

[編輯]
  • 有界性[2]
  • 單調性
  • 右連續性:

之值落在一區間之內的機率為

一隨機變數的CDF與其PDF的關係為

反函數

[編輯]

若累積分布函數 是連續的嚴格增函數,則存在其反函數。累積分布函數的反函數可以用來生成服從該隨機分布的隨機變量。設若是概率分布的累積分布函數,並存在反函數。若區間上均勻分布的隨機變量,則服從分布。

互補累積分布函數

[編輯]

互補累積分布函數(complementary cumulative distribution function、CCDF),是對連續函數,所有大於的值,其出現概率的和。

參見

[編輯]

參考

[編輯]
  1. ^ 1.0 1.1 Park, Kun Il. Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. 2018. ISBN 978-3-319-68074-3. 
  2. ^ 《概率論與數理統計教程》茆詩松 程依明 濮曉龍