在拓扑学与相关数学领域里,导出拓扑(英语:induced topology,或译诱导拓扑)是指透过拓扑空间与某个集合间的函数,所导出该集合之拓扑。该集合可能是函数的定义域或到达域。
导出拓扑的定义如下:
- 令 X0、X1 为集合, 为由 X0 映射至 X1 的函数。
- 若 为 X0 上的拓扑,则由 在 X1 上导出之拓扑为 。
- 若 为 X1 上的拓扑,则由 在 X0 上导出之拓扑为 。
可以看到,上述两个定义都是使用原像,因为原像会维持集合的交集与并集,但像则不一定可以。举例来说,考虑一具有拓扑 之集合 、一集合 ,以及一函数 ,使得 。可知, 不会形成一个拓扑,因为 ,但 。
下面为导出拓扑的等价定义:
- 由 f 在 X1 上导出之拓扑 为使得 f 是连续的最精细拓扑。此一拓扑为 X1 上终拓扑之一例。
- 由 f 在 X0 上导出之拓扑 为使得 f 是连续的最粗糙拓扑。此一拓扑为 X0 上初拓扑之一例。
- Hu, Sze-Tsen. Elements of general topology. Holden-Day. 1969.