跳转到内容

奇异酵母

这是一篇优良条目,点击此处获取更多信息。
维基百科,自由的百科全书
奇异酵母
YPD培养基英语YEPD上生长的奇异酵母,其中右侧为经减数分裂产生的四个孢子(四分体)
科学分类 编辑
界: 真菌界 Fungi
门: 子囊菌门 Ascomycota
纲: 酵母菌纲 Saccharomycetes
目: 酵母菌目 Saccharomycetales
科: 酵母菌科 Saccharomycetaceae
属: 酵母属 Saccharomyces
种:
奇异酵母 S. paradoxus
二名法
Saccharomyces paradoxus
Bach.-Raich., 1914
异名[1]
  • Zygosaccharomyces paradoxus
  • Zygosaccharomycodes paradoxus
  • Saccharomyces mangini var. tetraspora
  • Saccharomyces cerevisiae var. tetraspora
  • Saccharomyces douglasii

奇异酵母[2]学名Saccharomyces paradoxus)是子囊菌门酵母属的一种真菌,最早于1914年自俄罗斯落叶树样本中发现,一度被视为酿酒酵母的变型异名,后因分子证据而被确定为酵母属中的独立物种。本种酵母菌可分为数个演化支,分别分布于欧洲、北美洲、东亚等地,且彼此间已产生一定程度的生殖隔离,可能正在进行种化

奇异酵母为未经人类驯化人择选汰的野生酵母菌,一般仅见于温带地区野外落叶树的样本中,不见于人为发酵的酒或食物中;本种为与模式生物酿酒酵母关系最近的物种[3],两者在外形与生理上都非常相似,惟本种的最适生长温度稍低于酿酒酵母。

分类

[编辑]

奇异酵母最早于1914年由任职于彼得格勒女子医学院(今圣彼得堡国立巴甫洛夫医科大学)的俄罗斯真菌学家A. A. 巴钦斯卡娅-拉伊琴科(А. А. Бачинская-Райченко / A. A. Bachinskaya-Raichenko)发表描述,自圣彼得堡植物园夏栎以及波尔塔瓦州欧洲野榆样本中发现[4][5]。同年马丁努斯·威廉·拜耶林克也在荷兰的橡树样本发现相似的酵母菌,将其发表为接合酵母属的新种Zygosaccharomyces tetraspora。后续学者多将这两个物种视为酿酒酵母的变型异名。1989年,这两个物种基于分子证据被视为同种,并自酿酒酵母中分出,重新被发表为酵母属的独立物种奇异酵母(Saccharomyces paradoxus[6]

奇异酵母的种小名paradoxus来自古希腊语的παράδοξος/parádoxos,意为“奇怪的、意料之外的”,得名自发表者巴钦斯卡娅-拉伊琴科等早期学者认为本种的生活史有特别之处,即其子囊中的四个子囊孢子可共同融合而形成一个结构复杂的合子。但后来的学者并没有发现此现象,奇异酵母的生活史与酿酒酵母并无相异之处,合子一样是由两个子囊孢子融合而成,且不同交配型的孢子才可融合产生合子[7]

生理

[编辑]
奇异酵母与酿酒酵母杂交产生新菌株,此杂交菌株后来在适应环境的过程中丢失许多来自亲本奇异酵母的基因组,而以酿酒酵母亲本的取代之

奇异酵母是一种野生酵母菌,几乎没有自人为发酵的酒或食物中发现的纪录[8],一般见于橡树枫树桦树落叶树的样本中,也有采自果蝇等昆虫样本的[9][10][11][12],有时与酿酒酵母等同属其他种酵母菌一起出现[13][14][15]

奇异酵母与酿酒酵母的外形、生活史、以及发酵能力等生理特征几乎没有差异,全基因组序列相似度约为88%[5],两者约于距今500万至1000万年前分家[16]。两物种在野外的共存模式与生态栖位差异仍有待更多研究阐明[17]。野生的奇异酵母与酿酒酵母菌株多无发酵麦芽糖的能力,奇异酵母的发表者巴钦斯卡娅-拉伊琴科即指出奇异酵母无法发酵麦芽糖。在人为培养之下,两者皆可逐渐发生变异与适应,渐获得发酵麦芽糖的能力[7]

奇异酵母与酿酒酵母一样为中温生物,而酵母属其他物种都较适合在低温下生长,因此耐热能力应为这两个物种的共衍征[18]。但奇异酵母的最适生长温度又比酿酒酵母稍低,分布范围也包括比酿酒酵母分布范围冷的地区[9][15][3]。奇异酵母的最适生长温度为摄氏37至38度,相较之下酿酒酵母则为41至42度,有研究表明北美洲的高纬度地区野外少有酿酒酵母分布,奇异酵母则相当常见;也有研究表明欧洲样本中出现奇异酵母的几率和气温呈负相关;中国北方南方均有酿酒酵母分布,奇异酵母则几乎不见于南方的副热带热带气候区[19]

奇异酵母大都行无性生殖,在环境中大多为二倍体(2N),有性生殖也有很高的比例是发生在同一子囊的孢子之间[20]。奇异酵母的菌株大多为同型合子,仅有WX21为异型合子(应是由两菌株杂交产生)[19]。奇异酵母与酿酒酵母间有生殖隔离,杂交后仅有1%至3%可产生可萌发的孢子[21],且这些子代孢子通常带有染色体数目的异常[5]。但仍有奇异酵母与酿酒酵母杂交产生的菌株在野外被发现[22],另外也有发现奇异酵母和另一同属物种库德里阿兹威氏酵母杂交产生的菌株[23]

奇异酵母与酿酒酵母一样可以在被真菌病毒感染后成为嗜杀酵母英语killer yeast,合成毒素以杀伤周围未被感染的酵母[24]

族群演化

[编辑]
奇异酵母主要支系的分布范围

奇异酵母因未受人择选汰影响,其生物地理分布反映了地理隔离与对环境因子的适应[10][25]。奇异酵母最初可细分为四大主要演化支,分别为分布于欧洲(包括西西伯利亚)和北美洲的SpA、分布于远东(日本东西伯利亚)的一个演化支、分布于北美洲(东西海岸与五大湖区)的SpB以及分布于北美东北部(加斯佩半岛圣罗伦斯河谷地与阿帕拉契山脉北缘)的SpC[3][10][25][26][27],四个株系彼此间已发生一定程度的合子后生殖隔离[28][29],可能正在经历种化的过程[23]。此外夏威夷有一样本可能构成第五个奇异酵母的演化支[10][26]。有些欧洲的菌株(SpA)在北美与新西兰出现,但在当地的序列多样性都很低,可能是近代随着外来种橡树由殖民者引入[30][31]。随着北美洲更多奇异酵母菌株的发现,北美族群共可细分为SpA、SpB、SpC、SpC*、SpD1和SpD2等6个子支序,其中SpC*可能是由SpB和SpC杂交而成的菌株衍生,SpD1和SpD2则可能是由SpC*和SpB杂交而成的菌株衍生[19][27],SpD1、D2已经和亲本的SpB和SpC发生生殖隔离,SpC*则尚无[27]。中国的奇异酵母菌株多属远东支序,但有少数几个菌株和远东支序关系较远而自成一群,且两者的分布范围没有差异。因欧亚大陆的奇异酵母菌株多样性远高于北美,奇异酵母应是起源自欧亚大陆,且可能是起源自有两个支序同时并存的中国[19]

另外,南美洲有两个原被认为是奇异酵母的样本,因分子证据显示其与本种序列有一定差异,已被描述为新种里约酵母英语Saccharomyces cariocanus[32],但有后续研究认为两者关系紧密,尚未发生种化[29]。里约酵母与奇异酵母的序列差异不大,应属奇异酵母北美支序中的SpB演化支[19],但两者杂交后有生殖隔离,可萌发孢子的几率很低,这是因里约酵母有四段染色体发生易位所致[5]

有研究显示欧洲的奇异酵母支系有发生来自酿酒酵母的基因渗入[29];相对地也有奇异酵母的序列片段经基因渗入进入酿酒酵母菌株的基因组[33]

演化树

[编辑]

以下为奇异酵母各演化支的演化树[19]

欧亚大陆类群

少数中国菌株

远东演化支(日本、东西伯利亚、中国菌株)

欧洲演化支SpA(欧洲、西西伯利亚菌株)

北美洲类群

SpC

SpC*

夏威夷菌株

SpD2

SpB(含巴西菌株)

SpD1

应用

[编辑]

酿酒酵母被人类驯化、受人择选汰已久,奇异酵母则未受此影响,可能更能反映野生酵母菌的生态,因此在一些演化与群体基因组学研究中被用作研究对象[26][34][35]。奇异酵母的基因组已于2003年被完整定序[36]

奇异酵母虽与酿酒酵母关系接近,但奇异酵母为一种野生酵母,几乎只见于自野外树皮、落叶、土壤与昆虫身上采集的样本[5],鲜少在食品工业中被使用,也几无在人为发酵的酒或食物中发现的纪录[8],造成此现象的原因可能是奇异酵母较不适于生长在高温的环境[19]。有研究指奇异酵母可能有被用于酿酒的潜力,且可能为酒带来不同的风味[37][38][39],目前已有奇异酵母与酿酒酵母的杂交株被用于酿酒[40][41]

参考文献

[编辑]
  1. ^ Cletus Kurtzman, J.W. Fell (编). The Yeasts - A Taxonomic Study. Elsevier Science. 1998: 366 [2024-04-12]. ISBN 9780080542690. (原始内容存档于2024-04-13). 
  2. ^ 龙思宇、严少敏. 酿酒酵母功能基因组学研究进展. 科学技术与工程. 2014, 14 (2). 
  3. ^ 3.0 3.1 3.2 Johnson, LJ; Koufopanou, V; Goddard, MR. Population genetics of the wild yeast Saccharomyces paradoxus. Genetics. 2004, 166 (1): 43–52. PMC 1470673可免费查阅. PMID 15020405. doi:10.1534/genetics.166.1.43. 
  4. ^ Batschinskaya, A.A. Entwicklungsgeschichte und Kultur des neuen Hefepilzes Saccharomyces paradoxus [History of development and culture of a new yeast fungus, Saccharomyces paradoxus]. J. Microbiol. Epidemiol. Immunobiol. 1914, 1: 231–247 (德语). 
  5. ^ 5.0 5.1 5.2 5.3 5.4 Ono, Jasmine; Greig, Duncan; Boynton, Primrose J. Defining and Disrupting Species Boundaries in Saccharomyces. Annual Review of Microbiology. 2020-09-08, 74 (1): 477–495. doi:10.1146/annurev-micro-021320-014036. 
  6. ^ Martini, Ann Vaughan. Saccharomyces paradoxus comb. nov., a Newly Separated Species of the Saccharomyces sensu stricto Complex Based upon nDNA/nDNA Homologies. Systematic and Applied Microbiology. 1989-10, 12 (2): 179–182. doi:10.1016/S0723-2020(89)80012-8. 
  7. ^ 7.0 7.1 Naumov, G. I. Ecological and biogeographical features of Saccharomyces paradoxus Batschinskaya yeast and related species: I. The early studies. Microbiology. 2013-07, 82 (4): 397–403. doi:10.1134/S0026261713040073. 
  8. ^ 8.0 8.1 Louis, Edward J. Population genomics and speciation in yeasts. Fungal Biology Reviews. 2011-10, 25 (3): 136–142. doi:10.1016/j.fbr.2011.06.001. 
  9. ^ 9.0 9.1 Charron, G; Leducq, J-B; Bertin, C. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. FEMS Yeast Research. 2014, 14 (2): 281–8. PMID 24119009. doi:10.1111/1567-1364.12100可免费查阅. 
  10. ^ 10.0 10.1 10.2 10.3 Hyma, KE; Jay, JC. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Molecular Ecology. 2013, 22 (11): 2917–30. PMC 3620907可免费查阅. PMID 23286354. doi:10.1111/mec.12155. 
  11. ^ Maganti, H; Bartfai, D; Xu, J. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada. FEMS Yeast Research. 2012, 12 (1): 9–19. PMID 22029478. doi:10.1111/j.1567-1364.2011.00756.x可免费查阅. 
  12. ^ Sniegowski, PD; Dombrowski, PG; Fingerman, E. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Research. 2002, 1 (4): 299–306. PMID 12702333. doi:10.1111/j.1567-1364.2002.tb00048.x可免费查阅. 
  13. ^ Naumov, GI; Naumova, ES; Sniegowski, PD. Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Canadian Journal of Microbiology. 1998, 44 (11): 1045–50. PMID 10029999. doi:10.1139/w98-104. 
  14. ^ Sampaio, JP; Goncalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus (PDF). Applied and Environmental Microbiology. 2008, 74 (7): 2144–52 [2024-04-08]. Bibcode:2008ApEnM..74.2144S. PMC 2292605可免费查阅. PMID 18281431. doi:10.1128/AEM.02396-07. (原始内容存档 (PDF)于2024-04-08). 
  15. ^ 15.0 15.1 Sweeney, JY; Kuehne, HA; Sniegowski, PD. Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Research. 2004, 4 (4–5): 521–5. PMID 14734033. doi:10.1016/s1567-1356(03)00171-5可免费查阅. 
  16. ^ Dori-Bachash, Mally; Shema, Efrat; Tirosh, Itay. Coupled Evolution of Transcription and mRNA Degradation. PLoS Biology. 2011-07-19, 9 (7): e1001106. doi:10.1371/journal.pbio.1001106. 
  17. ^ Sniegowski, Paul D; Dombrowski, Peter G; Fingerman, Ethan. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Research. 2002-01, 1 (4): 299–306. doi:10.1111/j.1567-1364.2002.tb00048.x. 
  18. ^ Peris, David; Ubbelohde, Emily J.; Kuang, Meihua Christina; Kominek, Jacek; Langdon, Quinn K.; Adams, Marie; Koshalek, Justin A.; Hulfachor, Amanda Beth; Opulente, Dana A.; Hall, David J.; Hyma, Katie; Fay, Justin C.; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R.; Libkind, Diego; Gonçalves, Carla; Gonçalves, Paula; Sampaio, José Paulo; Wang, Qi-Ming; Bai, Feng-Yan; Wrobel, Russel L.; Hittinger, Chris Todd. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nature Communications. 2023-02-08, 14 (1). doi:10.1038/s41467-023-36139-2. 
  19. ^ 19.0 19.1 19.2 19.3 19.4 19.5 19.6 He, Peng‐Yu; Shao, Xu‐Qian; Duan, Shou‐Fu; Han, Da‐Yong; Li, Kuan; Shi, Jun‐Yan; Zhang, Ri‐Peng; Han, Pei‐Jie; Wang, Qi‐Ming; Bai, Feng‐Yan. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China. Yeast. 2022-01, 39 (1-2): 69–82. doi:10.1002/yea.3688. 
  20. ^ Tsai, IJ; Bensasson, D; Burt, A. Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105 (12): 4957–62. Bibcode:2008PNAS..105.4957T. PMC 2290798可免费查阅. PMID 18344325. doi:10.1073/pnas.0707314105可免费查阅. 
  21. ^ Ono, Jasmine; Greig, Duncan. A Saccharomyces paradox: chromosomes from different species are incompatible because of anti-recombination, not because of differences in number or arrangement. Current Genetics. 2020-06, 66 (3): 469–474. doi:10.1007/s00294-019-01038-x. 
  22. ^ Pontes, Ana; Čadež, Neža; Gonçalves, Paula; Sampaio, José Paulo. A Quasi-Domesticate Relic Hybrid Population of Saccharomyces cerevisiae × S. paradoxus Adapted to Olive Brine. Frontiers in Genetics. 2019-05-29, 10. doi:10.3389/fgene.2019.00449. 
  23. ^ 23.0 23.1 Boynton, Primrose J.; Greig, Duncan. The ecology and evolution of non-domesticated Saccharomyces species: Saccharomyces ecology and evolution. Yeast. 2014-10. doi:10.1002/yea.3040. 
  24. ^ Boynton, Primrose J.; Wloch‐Salamon, Dominika; Landermann, Doreen; Stukenbrock, Eva H. Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecology and Evolution. 2021-06, 11 (11): 6604–6619. doi:10.1002/ece3.7515. 
  25. ^ 25.0 25.1 Leducq, J-B; Charron, G; Samani, P. Local climatic adaptation in a widespread microorganism. Proceedings of the Royal Society B: Biological Sciences. 2014, 281 (1777): 20132472. PMC 3896012可免费查阅. PMID 24403328. doi:10.1098/rspb.2013.2472. 
  26. ^ 26.0 26.1 26.2 Liti, G; Carter, DM; Moses, AM. Population genomics of domestic and wild yeasts. Nature. 2009, 458 (7236): 337–41. Bibcode:2009Natur.458..337L. PMC 2659681可免费查阅. PMID 19212322. doi:10.1038/nature07743. 
  27. ^ 27.0 27.1 27.2 Eberlein, Chris; Hénault, Mathieu; Fijarczyk, Anna; Charron, Guillaume; Bouvier, Matteo; Kohn, Linda M.; Anderson, James B.; Landry, Christian R. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nature Communications. 2019-02-25, 10 (1). doi:10.1038/s41467-019-08809-7. 
  28. ^ Charron, G; Leducq, J-B; Landry, CR. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Molecular Ecology. 2014, 23 (17): 4362–4372. PMID 25039979. S2CID 43071397. doi:10.1111/mec.12864. 
  29. ^ 29.0 29.1 29.2 Liti, G; Barton, DB; Louis, EJ. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics. 2006, 174 (2): 839–850. PMC 1602076可免费查阅. PMID 16951060. doi:10.1534/genetics.106.062166. 
  30. ^ Kuehne, HA; Murphy, HA; Francis, CA. Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Current Biology. 2007, 17 (5): 407–11. PMID 17306538. S2CID 18301950. doi:10.1016/j.cub.2006.12.047可免费查阅. 
  31. ^ Zhang, HA; Skelton, A; Gardner, RC. Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids. FEMS Yeast Research. 2010, 10 (7): 941–7. PMID 20868381. doi:10.1111/j.1567-1364.2010.00681.x可免费查阅. 
  32. ^ Naumov, GI; James, SA; Naumova, ES. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. International Journal of Systematic and Evolutionary Microbiology. 2000, 50 (5): 1931–42. PMID 11034507. doi:10.1099/00207713-50-5-1931可免费查阅. 
  33. ^ Morales, Lucia; Dujon, Bernard. Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts. Microbiology and Molecular Biology Reviews. 2012-12, 76 (4): 721–739. doi:10.1128/mmbr.00022-12. 
  34. ^ Dunham, Maitreya J; Louis, Edward J. Yeast evolution and ecology meet genomics. EMBO reports. 2011-01, 12 (1): 8–10. doi:10.1038/embor.2010.204. 
  35. ^ Dunham, MJ; Louis, ED. Yeast evolution and ecology meet genomics. EMBO Reports. 2011, 12 (1): 8–10. PMC 3024138可免费查阅. PMID 21151040. doi:10.1038/embor.2010.204. 
  36. ^ Kellis, Manolis; Patterson, Nick; Endrizzi, Matthew; Birren, Bruce; Lander, Eric S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003-05, 423 (6937): 241–254. doi:10.1038/nature01644. 
  37. ^ Nikulin, Jarkko; Vidgren, Virve; Krogerus, Kristoffer; Magalhães, Frederico; Valkeemäki, Seija; Kangas-Heiska, Tapio; Gibson, Brian. Brewing potential of the wild yeast species Saccharomyces paradoxus. European Food Research and Technology. 2020-11, 246 (11): 2283–2297. doi:10.1007/s00217-020-03572-2. 
  38. ^ Costantini, Antonella; Cravero, Maria Carla; Panero, Loretta; Bonello, Federica; Vaudano, Enrico; Pulcini, Laura; Garcia-Moruno, Emilia. Wine Fermentation Performance of Indigenous Saccharomyces cerevisiae and Saccharomyces paradoxus Strains Isolated in a Piedmont Vineyard. Beverages. 2021-05-28, 7 (2): 30. doi:10.3390/beverages7020030. 
  39. ^ S. Orlić, F.N. Arroyo‐López, K. Huić‐Babić, I. Lucilla, A. Querol, E. Barrio. A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. Journal of Applied Microbiology. 2010-01, 108 (1): 73–80. doi:10.1111/j.1365-2672.2009.04406.x. 
  40. ^ EXOTIC YEASTS. Oenobrands. [2024-04-12]. (原始内容存档于2023-04-01). 
  41. ^ Kanter, Jean-Philippe; Benito, Santiago; Brezina, Silvia; Beisert, Beata; Fritsch, Stefanie; Patz, Claus-Dieter; Rauhut, Doris. The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines. Food Chemistry: X. 2020-03, 5: 100072. doi:10.1016/j.fochx.2019.100072.